
arSensa.com©	2009-2018

Corporate Structure, 
Component Teams & 

Conway’s Law
How your organization influences 
your code and ability to deliver



arSensa.com©	2009-2018

Based on the July 18 AgileTO talk by 

Craig Larman 
co-inventor of LeSS

Craig	Larman	gave	a	2-hour	talk	to	the	AgileTO	agile	Meet-up	group	on	Tuesday	July	18,	2018.	

The	talk	was	divided	into	three	parts:	1)	Formal,	2)	Informal,	3)	Q&A.	

The	formal	piece	used	a	slide	deck	and	its	primary	thesis	was	that	LeSS	was	not	a	scaling	framework,	but	a	de-scaling	framework:	large	organizations	adopt	LeSS	to	reduce	organizational	overhead.	

The	informal	piece	was	done	via	fat-markers	and	poster	paper.	He	spent	about	45	minutes	conveying	the	concepts	shown	in	this	deck,	up	to	slide	12.	

The	Q&A	session	was	to	run	45	minutes,	CT	did	not	stick	around	to	see	this.



arSensa.com©	2009-2018

BMW is adopting LeSS 
for their Autonomous Driving 

Initiative

Craig	name	dropped	that	he	is	working	with	the	BMW	Autonomous	Driving	Group.		There	is	a	short	video	available	on	YouTube	from	BMW	that	talks	about	this	group	at	a	high	level.	Craig	did	not	use	it	in	his	talk.	

Welcome	to	the	BMW	Group	Autonomous	Driving	Campus	-	YouTube	
https://www.youtube.com/watch?v=Hbm6IcD78R0



arSensa.com©	2009-2018

An important success factor in 
LeSS is feature teams



arSensa.com©	2009-2018

Component Based Teams
• Traditional software development 

is usually done with component 
based teams 
• E.g. “database team”, “GUI 

team”



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

Large	organizations	often	have	a	significant	number	of	components.	There	isn’t	always	a	1:1	relationship	between	component	and	team,	but	the	organizational	basic	structures	often	reflect	the	component	structure.	

Craig	has	worked	with	organizations	that	have	100s,	if	not	1000s	of	components.	

To	keep	the	example	simple,	consider	a	system	with	9	components.	

Consider	feature	F1.	It	touches	several	different	components.	Now	consider	feature	F2,	it	also	touches	several	components,	some	of	which	are	the	same	components	as	F1.	This	causes	orchestration	problems.	

Craig’s	diagram	went	on	to	make	the	screen	a	mess,	highlighting	what	this	would	mean	for	100s	of	features.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1

Large	organizations	often	have	a	significant	number	of	components.	There	isn’t	always	a	1:1	relationship	between	component	and	team,	but	the	organizational	basic	structures	often	reflect	the	component	structure.	

Craig	has	worked	with	organizations	that	have	100s,	if	not	1000s	of	components.	

To	keep	the	example	simple,	consider	a	system	with	9	components.	

Consider	feature	F1.	It	touches	several	different	components.	Now	consider	feature	F2,	it	also	touches	several	components,	some	of	which	are	the	same	components	as	F1.	This	causes	orchestration	problems.	

Craig’s	diagram	went	on	to	make	the	screen	a	mess,	highlighting	what	this	would	mean	for	100s	of	features.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1

Large	organizations	often	have	a	significant	number	of	components.	There	isn’t	always	a	1:1	relationship	between	component	and	team,	but	the	organizational	basic	structures	often	reflect	the	component	structure.	

Craig	has	worked	with	organizations	that	have	100s,	if	not	1000s	of	components.	

To	keep	the	example	simple,	consider	a	system	with	9	components.	

Consider	feature	F1.	It	touches	several	different	components.	Now	consider	feature	F2,	it	also	touches	several	components,	some	of	which	are	the	same	components	as	F1.	This	causes	orchestration	problems.	

Craig’s	diagram	went	on	to	make	the	screen	a	mess,	highlighting	what	this	would	mean	for	100s	of	features.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

Large	organizations	often	have	a	significant	number	of	components.	There	isn’t	always	a	1:1	relationship	between	component	and	team,	but	the	organizational	basic	structures	often	reflect	the	component	structure.	

Craig	has	worked	with	organizations	that	have	100s,	if	not	1000s	of	components.	

To	keep	the	example	simple,	consider	a	system	with	9	components.	

Consider	feature	F1.	It	touches	several	different	components.	Now	consider	feature	F2,	it	also	touches	several	components,	some	of	which	are	the	same	components	as	F1.	This	causes	orchestration	problems.	

Craig’s	diagram	went	on	to	make	the	screen	a	mess,	highlighting	what	this	would	mean	for	100s	of	features.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

Large	organizations	often	have	a	significant	number	of	components.	There	isn’t	always	a	1:1	relationship	between	component	and	team,	but	the	organizational	basic	structures	often	reflect	the	component	structure.	

Craig	has	worked	with	organizations	that	have	100s,	if	not	1000s	of	components.	

To	keep	the	example	simple,	consider	a	system	with	9	components.	

Consider	feature	F1.	It	touches	several	different	components.	Now	consider	feature	F2,	it	also	touches	several	components,	some	of	which	are	the	same	components	as	F1.	This	causes	orchestration	problems.	

Craig’s	diagram	went	on	to	make	the	screen	a	mess,	highlighting	what	this	would	mean	for	100s	of	features.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

Assume	that	dependancies	mean	that	the	components	must	be	worked	on	in	order	of	the	line	threading	through	them.	Consider	that	there	is	no	relationship	between	the	component,	the	feature	and	the	amount	of	time	being	spent	—	just	because	different	features	both	require	work	on	the	same	component	does	not	mean	the	amount	of	
work	in	the	component	will	be	consistent.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

Assume	that	dependancies	mean	that	the	components	must	be	worked	on	in	order	of	the	line	threading	through	them.	Consider	that	there	is	no	relationship	between	the	component,	the	feature	and	the	amount	of	time	being	spent	—	just	because	different	features	both	require	work	on	the	same	component	does	not	mean	the	amount	of	
work	in	the	component	will	be	consistent.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Assume	that	dependancies	mean	that	the	components	must	be	worked	on	in	order	of	the	line	threading	through	them.	Consider	that	there	is	no	relationship	between	the	component,	the	feature	and	the	amount	of	time	being	spent	—	just	because	different	features	both	require	work	on	the	same	component	does	not	mean	the	amount	of	
work	in	the	component	will	be	consistent.



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

There	is	now	a	scheduling	problem	for	F1	&	F2	because	they	touch	components	1	&	4.	If	a	team	only	works	on	a	single	feature	at	a	time,	we	have	a	gapping	problem.	If	the	teams	work	on	multiple	features	at	a	time	we	have	a	co-ordination	problem.	



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

There	is	now	a	scheduling	problem	for	F1	&	F2	because	they	touch	components	1	&	4.	If	a	team	only	works	on	a	single	feature	at	a	time,	we	have	a	gapping	problem.	If	the	teams	work	on	multiple	features	at	a	time	we	have	a	co-ordination	problem.	



arSensa.com©	2009-2018

Simple Example

Comp1 Comp2 Comp3

Comp4 Comp5 Comp6

Comp7 Comp8 Comp9

F1 F2

F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

There	is	now	a	scheduling	problem	for	F1	&	F2	because	they	touch	components	1	&	4.	If	a	team	only	works	on	a	single	feature	at	a	time,	we	have	a	gapping	problem.	If	the	teams	work	on	multiple	features	at	a	time	we	have	a	co-ordination	problem.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

In	traditional	software	development,	this	problem	is	addressed	by	introducing	roles	to	help	with	co-ordination.		

Project	managers	operate	at	the	feature	level	and	attempt	co-ordination	between	the	component	teams.	It	is	difficult	for	them	to	schedule	work	and	any	delay	impacts	other	features	and	other	component	teams.	

There	is	an	additional	problem	about	how	the	features’	requirements	within	a	given	component	interact	with	each	other.	To	help	with	this	problem	organizations	often	introduce	a	Technical	BA	role	to	manage	and	coordinate	low	level	requirements	across	features	and	components.	

Large	systems	with	many	components	means	a	lot	of	potential	interactions.	Organizations	introduce	Architects	to	deal	with	this	problem.	

There	are	often	large	gaps	of	time	when	a	feature	might	not	be	actively	worked	on	due	to	unavailability	of	a	component	team.	Further,	integration	testing	can’t	be	completed	until	all	components	are	delivered.	This	introduces	complexities	in	testing.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Manager

In	traditional	software	development,	this	problem	is	addressed	by	introducing	roles	to	help	with	co-ordination.		

Project	managers	operate	at	the	feature	level	and	attempt	co-ordination	between	the	component	teams.	It	is	difficult	for	them	to	schedule	work	and	any	delay	impacts	other	features	and	other	component	teams.	

There	is	an	additional	problem	about	how	the	features’	requirements	within	a	given	component	interact	with	each	other.	To	help	with	this	problem	organizations	often	introduce	a	Technical	BA	role	to	manage	and	coordinate	low	level	requirements	across	features	and	components.	

Large	systems	with	many	components	means	a	lot	of	potential	interactions.	Organizations	introduce	Architects	to	deal	with	this	problem.	

There	are	often	large	gaps	of	time	when	a	feature	might	not	be	actively	worked	on	due	to	unavailability	of	a	component	team.	Further,	integration	testing	can’t	be	completed	until	all	components	are	delivered.	This	introduces	complexities	in	testing.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers
Project	
Manager

In	traditional	software	development,	this	problem	is	addressed	by	introducing	roles	to	help	with	co-ordination.		

Project	managers	operate	at	the	feature	level	and	attempt	co-ordination	between	the	component	teams.	It	is	difficult	for	them	to	schedule	work	and	any	delay	impacts	other	features	and	other	component	teams.	

There	is	an	additional	problem	about	how	the	features’	requirements	within	a	given	component	interact	with	each	other.	To	help	with	this	problem	organizations	often	introduce	a	Technical	BA	role	to	manage	and	coordinate	low	level	requirements	across	features	and	components.	

Large	systems	with	many	components	means	a	lot	of	potential	interactions.	Organizations	introduce	Architects	to	deal	with	this	problem.	

There	are	often	large	gaps	of	time	when	a	feature	might	not	be	actively	worked	on	due	to	unavailability	of	a	component	team.	Further,	integration	testing	can’t	be	completed	until	all	components	are	delivered.	This	introduces	complexities	in	testing.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BAProject	
Manager

In	traditional	software	development,	this	problem	is	addressed	by	introducing	roles	to	help	with	co-ordination.		

Project	managers	operate	at	the	feature	level	and	attempt	co-ordination	between	the	component	teams.	It	is	difficult	for	them	to	schedule	work	and	any	delay	impacts	other	features	and	other	component	teams.	

There	is	an	additional	problem	about	how	the	features’	requirements	within	a	given	component	interact	with	each	other.	To	help	with	this	problem	organizations	often	introduce	a	Technical	BA	role	to	manage	and	coordinate	low	level	requirements	across	features	and	components.	

Large	systems	with	many	components	means	a	lot	of	potential	interactions.	Organizations	introduce	Architects	to	deal	with	this	problem.	

There	are	often	large	gaps	of	time	when	a	feature	might	not	be	actively	worked	on	due	to	unavailability	of	a	component	team.	Further,	integration	testing	can’t	be	completed	until	all	components	are	delivered.	This	introduces	complexities	in	testing.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA ArchitectsProject	
Manager

In	traditional	software	development,	this	problem	is	addressed	by	introducing	roles	to	help	with	co-ordination.		

Project	managers	operate	at	the	feature	level	and	attempt	co-ordination	between	the	component	teams.	It	is	difficult	for	them	to	schedule	work	and	any	delay	impacts	other	features	and	other	component	teams.	

There	is	an	additional	problem	about	how	the	features’	requirements	within	a	given	component	interact	with	each	other.	To	help	with	this	problem	organizations	often	introduce	a	Technical	BA	role	to	manage	and	coordinate	low	level	requirements	across	features	and	components.	

Large	systems	with	many	components	means	a	lot	of	potential	interactions.	Organizations	introduce	Architects	to	deal	with	this	problem.	

There	are	often	large	gaps	of	time	when	a	feature	might	not	be	actively	worked	on	due	to	unavailability	of	a	component	team.	Further,	integration	testing	can’t	be	completed	until	all	components	are	delivered.	This	introduces	complexities	in	testing.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QAProject	
Manager

In	traditional	software	development,	this	problem	is	addressed	by	introducing	roles	to	help	with	co-ordination.		

Project	managers	operate	at	the	feature	level	and	attempt	co-ordination	between	the	component	teams.	It	is	difficult	for	them	to	schedule	work	and	any	delay	impacts	other	features	and	other	component	teams.	

There	is	an	additional	problem	about	how	the	features’	requirements	within	a	given	component	interact	with	each	other.	To	help	with	this	problem	organizations	often	introduce	a	Technical	BA	role	to	manage	and	coordinate	low	level	requirements	across	features	and	components.	

Large	systems	with	many	components	means	a	lot	of	potential	interactions.	Organizations	introduce	Architects	to	deal	with	this	problem.	

There	are	often	large	gaps	of	time	when	a	feature	might	not	be	actively	worked	on	due	to	unavailability	of	a	component	team.	Further,	integration	testing	can’t	be	completed	until	all	components	are	delivered.	This	introduces	complexities	in	testing.	



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QA

Gluing	all	the	components	together	into	a	release,	coordinating	features	together	and	managing	the	code	now	becomes	a	full-time	job.	The	Release	Engineer	helps	coordinate.	

Of	course,	all	these	additional	people	means	that	we	need	managers	to	manage	them	all.



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QA

Gluing	all	the	components	together	into	a	release,	coordinating	features	together	and	managing	the	code	now	becomes	a	full-time	job.	The	Release	Engineer	helps	coordinate.	

Of	course,	all	these	additional	people	means	that	we	need	managers	to	manage	them	all.



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QA

Release	Engineer

Gluing	all	the	components	together	into	a	release,	coordinating	features	together	and	managing	the	code	now	becomes	a	full-time	job.	The	Release	Engineer	helps	coordinate.	

Of	course,	all	these	additional	people	means	that	we	need	managers	to	manage	them	all.



arSensa.com©	2009-2018

Proliferation of Roles
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QA

Release	Engineer Managers

Gluing	all	the	components	together	into	a	release,	coordinating	features	together	and	managing	the	code	now	becomes	a	full-time	job.	The	Release	Engineer	helps	coordinate.	

Of	course,	all	these	additional	people	means	that	we	need	managers	to	manage	them	all.



arSensa.com©	2009-2018

But… but… we’re Agile!
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QA

Release	Engineer Managers

Many	organizations	that	go	through	an	Agile	Transformation	build	scrum	teams	around	the	teams	already	in	place.	This	minimizes	the	disruption	to	the	teams	and	requires	the	least	amount	of	effort.	

The	problem	caused	by	the	component	teams	is	thus	not	fixed	by	going	Agile.	Some	increase	in	productivity	may	be	achieved,	but	the	fundamental	assumptions	of	the	original	organization	are	still	the	primary	bottlenecks.



arSensa.com©	2009-2018

But… but… we’re Agile!
F1

F2

Comp1 Comp4 Comp5

Comp1Comp2 Comp4 Comp7

Comp1

Comp1

Comp4

Comp4

Project	
Managers

Technical	BA Architects Integration	QA

Release	Engineer Managers

Scrum 

Master Product 

Owner Agile! Agile!

RTE Agile!

Many	organizations	that	go	through	an	Agile	Transformation	build	scrum	teams	around	the	teams	already	in	place.	This	minimizes	the	disruption	to	the	teams	and	requires	the	least	amount	of	effort.	

The	problem	caused	by	the	component	teams	is	thus	not	fixed	by	going	Agile.	Some	increase	in	productivity	may	be	achieved,	but	the	fundamental	assumptions	of	the	original	organization	are	still	the	primary	bottlenecks.



arSensa.com©	2009-2018

Prioritization Problems

Priority Feature Components

1 F1 C1 C4 C5
2 F2 C1 C2 C4 C7
3 F3 C2 C3 C6

25 F3 C3 C6 C9

.	.
	.

.	.
	.

.	.
	.

Component	based	team	structure	is	optimized	for	utilization	of	people.	This	is	counter	to	being	optimized	for	speed	of	delivery	or	simplicity	of	organization.	

It	also	is	not	optimized	for	prioritized	delivery.	Consider	a	list	of	priorities	where	the	team	for	component	9	is	not	involved	until	near	the	bottom	of	the	priority	list.	Either	the	team	has	significant	slack	time,	or	more	typically	they	start	work	—	work	that	has	24	things	ahead	of	it	that	is	more	important.



arSensa.com©	2009-2018

Prioritization Problems

Priority Feature Components

1 F1 C1 C4 C5
2 F2 C1 C2 C4 C7
3 F3 C2 C3 C6

25 F3 C3 C6 C9

.	.
	.

.	.
	.

.	.
	.

C9
If	this	is	the	first	
instance	of	C9,	is	
the	team	working	
on	a	priority	item?

Component	based	team	structure	is	optimized	for	utilization	of	people.	This	is	counter	to	being	optimized	for	speed	of	delivery	or	simplicity	of	organization.	

It	also	is	not	optimized	for	prioritized	delivery.	Consider	a	list	of	priorities	where	the	team	for	component	9	is	not	involved	until	near	the	bottom	of	the	priority	list.	Either	the	team	has	significant	slack	time,	or	more	typically	they	start	work	—	work	that	has	24	things	ahead	of	it	that	is	more	important.



arSensa.com©	2009-2018

Conway’s Law: Organizations that 
design systems are constrained to 
produce designs which are copies 

of the communication structures of 
these organizations.

Melvin	Conway	is	a	computer	scientist	who	presented	a	paper	on	modular	design	to	the	1968	Symposium	on	Modular	Design.	The	participants	at	the	symposium	dubbed	the	core	idea	“Conway’s	Law”	

(Different	Conway	than	the	Conway’s	Game	of	Life…	computer	science	has	a	lot	of	Conways)



arSensa.com©	2009-2018

In other words…

Corporate	
Organization Architecture

Organizations’	hierarchies	accidentally	influence	their	architecture.	This	is	a	side-effect	of	component	teams	designing	their	own	pieces	and	naturally	forming	interaction	points	to	other	departments.



arSensa.com©	2009-2018

From this…

Reporting	UI User	Management	UI Search	UI

Reporting	Logic User	Management
Search	Query

Search	Indexing

GU
I

Bi
z	L

og
ic

Da
ta
ba
se

Team	1 Team	2

Team	3 Team	4
Team	5

Team	6



arSensa.com©	2009-2018

… to this

UI UI UI

Logic Logic
Search	Query

Search	Indexing

Te
am

	1
,	2
	&
	3

Reporting User	Management Search

Te
am

	4

Te
am

	5
	&
	6

The	modern	architecture	answer	to	this	is	Feature	Based	Teams.	

Team	structure	should	be	based	around	the	business	need.	Like	components,	a	single	team	may	be	responsible	for	multiple	areas.	Multiple	teams	may	be	responsible	for	big	areas,	or	multiple	teams	may	be	involved	when	a	new	large	feature	area	is	being	built,	with	a	smaller	number	of	teams	continuing	to	enhance	it	over	the	life	of	the	
product.	

This	team	structure	and	architectural	design	concepts	around	it	can	be	found	in	Software	As	A	Service	and	Microservice	style	architectures.	Monolithic	systems	can	also	benefit	from	this	mechanism,	but	the	feature	boundaries	need	to	be	enforced	more	rigorously	—	the	boundaries	are	more	natural	in	SaaS	and	µServices.


